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a b s t r a c t

In this paper, a new analytical model is presented to investigate the heat transfer performance of sand-
wich metallic honeycomb structures under the forced convection conditions. The new method overcomes
the approximations in the corrugated wall model (also called the modified fin analogy model), the heat
transfer efficiency predicted by this new method is consistently lower than that predicted by the corru-
gated wall model and is higher than that by the effective medium model. Compared with the corrugated
wall model and the effective medium model, the new method gives the results closer to the numerical
simulation results, which indicates that the method is accurate.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycombs, 2-D prismatic cellular metals, have emerged as
promising multifunctional material systems [1–3]. They have a
combination of properties that can be tailored to make them suit-
able for a range of applications such as structural load support,
thermal management, impact energy absorption, sound absorp-
tion, fuel cell, energy storage, and others. The properties that ap-
pear most attractive are those that govern their use as cores for
panels or shells having lower weight than competing materials.

Prismatic structures have one easy flow direction and have at-
tracted significant interest for heat sink application including com-
pact electronic cooling devices and ultra-light actively cooled
aerospace structures. Numerous studies have been developed [4–
14], thereinto, there are two analytical models used to describe
the characteristic of heat transfer in two-dimensional prismatic
structures with forced convection. One is the corrugated wall mod-
el [4,5] (also called the modified fin analogy model [6,7]). The other
is the effective medium model [5]. The effective medium model
uses volume averaging technique and somewhat underestimates
the heat dissipation because of the assumption that the conduction
of heat occurs predominantly normal to the convective flow. The
corrugated wall approach can model the detailed cellular structure,
thus it was often adopted in latter works. However, this method is
also an approximate model.

There are two steps adopted to solve the thermal fields in the
corrugated wall model. Firstly, the analysis of heat transfer is per-
formed for the corrugated walls by excluding the effects of fins.
ll rights reserved.
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Then, the contribution from the fin is added according to the en-
ergy balance. Lu said in his paper [4]: except for the effects of fin
attachments which are modeled approximately, the approach is
felt to be fairly accurate. However, an important aspect is ne-
glected. The contribution of heat loss from fin attachment is about
one third of the total heat loss for regular hexagonal honeycomb
structures and about the half of the total heat loss for regular rect-
angular honeycomb structures, but the temperature field of a sin-
gle corrugated wall is solved by excluding the effects of fins and
then is used to decide the heat loss of the corrugated wall. Obvi-
ously, the temperature field obtained is not accurate, so that the
heat loss of the corrugated wall is also approximate.

In this paper, the transfer matrix method is presented as a new
analytical model to analyze the heat transfer for the corrugated
walls and fins simultaneously. So it can avoid the approximations
in the corrugated model. The article is organized as follows. The
model is described in Section 2. Section 3 presents the mathemat-
ical formulation of transfer matrix method. The comparisons with
other analytical models and the numerical simulation results are
discussed and show the validity of method in Section 4 and sum-
mary follow.
2. The model

The prototypical compact heat transfer exchanger design is
shown in Fig. 1. The cooling fluid, with velocity v0, temperature
T0, pressure p0, is forced to flow across a two-dimensional metal ar-
ray of thickness H sandwiched between two flat rectangular plates
of length L and width W. The plates are assumed to be thin and
have large thermal conductivity so that the temperature is as-
sumed to be constant along thickness direction. It is insulated on
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Fig. 1. Prototypical design of compact heat sink with two dimensional metal
honeycombs for cooling by forced convection.
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the left and right sides and is subjected to the heat sources on the
bottom and top surface. The width of channel, W, is assumed to be
much larger than the cellular size so that the thermal and hydrau-
lic fields are independent of the coordinate y. Let qf, vf, lf and cp de-
note the fluid density, kinematic viscosity, shear viscosity and
specific heat constant pressure, respectively. In addition, the usual
assumptions of the steady state laminar flow, and constant ther-
mal/physical properties of both fluid and solid are made.

3. Transfer matrix method

Actually, any prismatic structures can be considered here. For
the purpose of illustration, the regular hexagonal honeycomb
structure (shown in Fig. 2a) is taken as a sample to describe the ba-
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Fig. 2. (a) Cross-section of heat sink for regular hexagonal honeycombs, (b)
corrugated wall with the fin attachments and (c) analytical cell (solid line).
sic idea of transfer matrix method. Firstly, the heat sink is divided
into periodic slices of equal width, as shown in Fig. 2b. Then, one
analytical cell is selected along the corrugated wall direction, as
shown in Fig. 2c. The variation of temperature T along the cell wall
is governed by

d2Tðx; nÞ
dn2 � 2h

kst
ðTðx; nÞ � Tf ðxÞÞ ¼ 0; ð1Þ

where Tf(x) is the mean fluid temperature at the location with coor-
dinate x and n is the local coordinate along the wall. ks is the ther-
mal conductivity ratio of solid wall and t the thickness of the cell
wall. h is the local heat transfer coefficient and can be denoted by
following expression for regular hexagonal structures

h ¼ Nukfffiffiffi
3
p

l
ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p ; ð2Þ

where Nu is Nusselt number, kf is the thermal conductivity of cool-
ing fluid, q is the relative density and l is the cell size.

Assuming

T
_

ðx; nÞ ¼ Tðx; nÞ � Tf ðxÞ; ð3Þ

k2 ¼ 2h
kst

: ð4Þ

Eq. (1) can be rewritten as

d2 T
_

ðx; nÞ
dn2 � k2 T

_

ðx; nÞ ¼ 0: ð1:1Þ

Subjected the boundary conditions that T
_

ðx; nÞ ¼ T
_

i at n = 0 and
T
_

ðx; nÞ ¼ T
_

j at n = l, the solution of Eq. (1.1) can be expressed as

T
_

ðx; nÞ ¼ sinh½kðl� nÞ�
sinhðklÞ T

_

i þ
sinhðknÞ
sinhðklÞ T

_

j: ð5Þ

Thus, the heat flux along the wall is

qðx; nÞ ¼ �kst
dTðx; nÞ

dn

¼ kkst
coshðkðl� nÞÞ

sinhðklÞ T
_

iðxÞ �
coshðknÞ
sinhðklÞ T

_

jðxÞ
� �

: ð6Þ

The heat dissipation to the fluid through the corrugated wall of
length l is

qc ¼ qðx;0Þ � qðx; lÞ ¼ kkst � tanh kl=2ð ÞðT
_

i þ T
_

jÞ: ð7Þ

The temperature T̂ j0 at the node j0 should be the same with the tem-
perature T̂ j at the node j according to the symmetry, so the heat loss
to flow through the fin wall of length l/2 is

qf ¼
1
2

kkst � tanhðkl=2ðT
_

j þ T
_

j0 Þ ¼ kkst � tanh kl=2ð ÞT
_

j: ð8Þ

The energy equilibrium equation can be expressed as below

At node i qi ¼ qðx; 0Þ ¼ kkst
coshðklÞ
sinhðklÞ T

_

i �
1

sinhðklÞ T
_

j

� �
; ð9Þ

At node j qi � qc � qf ¼ qj: ð10Þ

Substituting the Eqs. (8) and (9) into the Eq. (10) yields

qj ¼ qi � kkst � tanhðkl=2ÞðT
_

i þ 2T
_

jÞ: ð11Þ

From Eqs. (10) and (11), we can get the expression of qj, T
_

j

qj ¼ ½2 coshðklÞ � 1�qi � kkst½2 sinhðklÞ � tanh kl=2ð Þ�T
_

i ð12:1Þ

T
_

j ¼ �
sinhðklÞ

kkst
qi þ coshðklÞT

_

i: ð12:2Þ
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Defining

Ci ¼
qi

T
_

i

" #
; ð13Þ

E ¼
2 coshðklÞ � 1� kkst½2 sinhðklÞ � tanh kl=2ð Þ�
� sinhðklÞ=ðkkstÞ coshðklÞ

� �
; ð14Þ

Eqs. (12.1) and (12.2) can be written in matrix form as:

Cj ¼ ECi ð15Þ

where the matrix E is defined as the transfer matrix.
The corrugated wall at the bottom shown in Fig. 2(b) has no fin

attached. In this particular case, the transfer matrix can be ex-
pressed as

E� ¼
coshðklÞ �kkst sinhðklÞ

� sinhðklÞ=ðkkstÞ coshðklÞ

� �
ð16Þ

which can be gained by a similar process expressed by Eqs. 10, 11,
13, 14 with qf = 0 in Eq. (10).

From Eq. (15), we have following expressions for the structure
shown in Fig. 2(b):

C2 ¼ EC1;

C3 ¼ EC2 ¼ E2C1

C4 ¼ EC3 ¼ E3C1

. . . . . .

Cn�1 ¼ ECn�2 ¼ En�2C1

Cn ¼ E�Cn�1 ¼ E�En�2C1

Define

K ¼ E�En�2 ¼
k11 k12

k21 k22

� �
ð17Þ

where

k11 ¼ u11ðk; lÞ; k12 ¼ �kkstu12ðk; lÞ;
k21 ¼ �u21ðk; lÞ=ðkkstÞ; k22 ¼ u22ðk; lÞ ð18Þ

then

Cn ¼ KC1 ð19Þ

where C1 ¼ ½ q1 T
_

1
�, Cn ¼ ½ qn T

_

n
� and T

_

1; T
_

n; q1; qn are the tem-
perature and flux on the two boundaries, respectively. If we know
the two of them, the other two can be gained easily.

There are usually two classic types of heat transfer boundary
conditions considered: One applies when both plates are isother-
mal with uniform temperature Tw and the other holds if the plates
release uniform heat flux (isoflux) q0. According to the study of Lu
[4], the resulting expression of the overall heat transfer coefficient
�h is identical for these two types of boundary conditions. The only
difference is that the Nu is 3.35 for the isothermal surface and is
4.021 for the constant heat flux surface. Thus, only the isothermal
surface is discussed in this paper.

Because the temperatures of both the upper and bottom surface
plates are Tw, i.e., T

_

1 ¼ T
_

n ¼ Tw � Tf ðxÞ, following relation can be
obtained from Eq. (19)

qn

Tw � Tf ðxÞ

� �
¼

k11 k12

k21 k22

� �
q1

Tw � Tf ðxÞ

� �
ð20Þ

Thus, the heat flux can be expressed as

q1 ¼ kkstUðk; lÞðTw � Tf ðxÞÞ ð21Þ
where

Uðk; lÞ ¼ u22ðk; lÞ � 1
u21ðk; lÞ

ð22Þ

Owing to the symmetry, the heat flux to the cooling fluid from bot-
tom surface is equal to that from upper surface. Thus, the total heat
loss is

qðxÞ ¼ 2q1 ¼ 2kkstUðk; lÞðTw � Tf ðxÞÞ ð23Þ
The mean fluid temperature Tf(x) is calculated by imposing energy
conservation for the control volume of length dx

_mcp½Tf ðxþ dxÞ � Tf ðxÞ� ¼ ½NsqðxÞ þ qwðxÞ�dx ð24Þ

where _m ¼ qf u0HW is the mass flow rate at the entrance to the heat
sink, qf, cp are the density and capacity of the cooling fluid, respec-
tively. Ns(=cnW/l) is the total number of slices over width W, and

qwðxÞ ¼ 2h W �
ffiffiffi
3
p

2
Nst

 !
½Tw � Tf ðxÞ� ð25Þ

is the heat flux into the fluid from both face sheets directly.
Combination Eqs. (23) and (24) gives rise to an ordinary differ-

ential equation for the mean fluid temperature Tf(x). The solution is

Tw � Tf ðxÞ ¼ ðTw � T0Þ expð�x=L�Þ ð26Þ
where L* is the characteristic length scale given by

L� ¼
qf cpu0H

2h
1� 1ffiffiffi

3
p t

l
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
p

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
Nukf

t
l

s
Uðk; lÞ

2
4

3
5
�1

ð27Þ

The overall heat transfer coefficient, �h of the heat sink is defined as

�h ¼ Q
2LWDTm

ð28Þ

where DTm is the logarithmic mean temperature difference denoted
by

DTm ¼
ðTw � T0Þ � ðTw � TeÞ

ln½ðTw � T0Þ=ðTw � TeÞ�
ð29Þ

and Q is the total heat dissipation from the sandwich structure

Q ¼ _mcpðTf ðLÞ � T0Þ ¼ qf cpu0HWðTw � T0Þf1� expð�L=L�Þg ð30Þ

It can be readily verified that DTm ¼ Tw � �Tf . The resulting expres-
sion for �h is

�h ¼ Nukfffiffiffi
3
p

l
ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p 1� 1ffiffiffi
3
p t

l
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
p

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
Nukf

t
l

s
Uðk; lÞ

2
4

3
5 ð31Þ

Notice that �h is independent of x and it is an intrinsic feature of heat
transfer in ducts with uniform temperature walls.

4. Discussion

For convenience, the dimensionless indices developed by Lu [4]
is utilized to evaluate the performance of metallic honeycomb
structure

I ¼ c1
�h=Dp ð32Þ

where

c1 ¼ vf qf u0=ks ð33Þ
Dp
L
¼ cf c2

a

8
qf vf u0

ð1� qÞ2l2
ð34Þ

and vf is the kinematical viscosity, cf the frictional coefficient, u0 the
velocity of fluid at the inlet, and ca the shape factor and equal 2.31
for hexagonal cells.
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For hexagonal honeycomb structures, the dimensionless index
determined by the transfer matrix method can be expressed as

I ¼ 2Nukf ð1� qÞ3=2l
kscf cL

a
1� 1ffiffiffi

3
p t

l
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
p

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
Nukf

t
l

s
Uðk; lÞ

2
4

3
5 ð35Þ

In [5], this dimensionless index for corrugated wall model of hexag-
onal honeycomb structure is given by

I ¼ 2Nu � kf ð1� qÞ3=2l
kscf cL

a

� 1� cncwt
l
þ 2cnn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kst

ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
caNu � kf l

s
tanh

 
cHH
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
caNu � kf l

2kst
ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
s !2

4
3
5
ð36Þ

where cn = 2/3, cw ¼
ffiffiffi
3
p

=2, n = 1, cH ¼ 2=
ffiffiffi
3
p

, the detailed definition
of these parameters can be referred to [5]. For the effective medium
model

I ¼ 4lð1� qÞ2

cf caksL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nukf ckzksq

q
tanh

caH
4l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nukf

ckzksq

s !( )
ð37Þ

These three methods are all employed below to investigate the heat
transfer efficiency. The parameters used are l = 1 mm, H=l ¼ 10

ffiffiffi
3
p

,
L/l = 50, ks = 200 W/mK, kf = 0.026 W/mK for the regular hexagonal
structure. The predicted heat transfer efficiency I againstq from
three models is shown in Fig. 3. Although these three models exhi-
bit the same trend, the predicted index I from the transfer matrix
method is consistently lower than that from the corrugated wall
model and is higher than that from the effective medium model.

To verify the accuracy of the transfer matrix method, the head
transfer efficiency of a hexagonal honeycomb structure is calcu-
lated by solving the fluid dynamic problem by use of the finite
volume method. In this calculation, the specific boundary condi-
tions are given as following: The temperature of both the upper
and bottom plates is 100 �C and the fluid temperature is 10 �C at
the inlet, the mass flow rate is 1.0 � 10�5 kg/s; A pressure-outlet
boundary condition with zero gauge pressure is employed at the
exit of the cell duct; Symmetrical boundary conditions for all side
surfaces in the width-direction are employed. The inner surfaces of
Fig. 3. Thermal performance index of sandwich structure with hexagonal honey-
comb core plotted as a function of relative density. Parameters include l = 1 mm,
H=l ¼ 10

ffiffiffi
3
p

, L/l = 50, ks = 200 W/mK, kf = 0.026 W/mK.
each cell are set as coupled thermal conditions. The heat capacity
and viscosity of the cooling fluid are 1006.43 J/kg K and 1.7894 �
10�5 kg/m s. For simplify, one periodic structure in width direction
shown in Fig. 4 is used. The results are also shown in Fig. 3. The
data shows that the transfer matrix method is closer to the results
of the finite volume method compared to the results of corrugated
wall model and effective medium model, which indicates to some
extent that the transfer matrix method is more precise compared
to other two models considered in this paper.
Table 1
Temperature of the nodes at the inlet section along the height direction shown in
Fig. 4

Nodes q = 0.01 q = 0.2

Corrugated wall
model

Transfer matrix
method

Corrugated wall
model

Transfer matrix
method

1 100.0000 100.0000 100.0000 100.0000
2 81.0530 77.1424 97.6219 96.5925
3 66.2635 60.1771 95.5314 93.5847
4 54.7659 47.6169 93.6679 90.9625
5 45.8877 38.3576 92.0799 88.7139
6 39.1093 31.5872 90.7443 86.8285
7 34.0341 26.7114 89.6571 85.2977
8 30.3652 23.3024 88.8149 84.1143
9 27.8878 21.0608 88.2153 83.2729
10 26.4571 19.7900 87.8562 82.7696
11 25.9893 13.3785 87.7366 82.6021
12 26.4571 19.7900 87.8562 82.7696
13 27.8878 21.0608 87.2153 83.2729
14 30.3652 23.3024 88.8149 84.1143
15 34.0341 26.7114 89.6571 85.2977
16 39.1093 31.5872 90.7443 86.8285
17 45.8877 38.3576 92.0799 88.7139
18 54.7659 47.6169 93.6679 90.9625
19 66.2635 60.1771 95.5314 93.5847
20 81.0530 77.1424 97.6219 96.5925
21 100.0000 100.0000 100.0000 100.0000
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As discussed before, the first step in the corrugated wall model
estimates the temperature field inaccurately and then such a
trend is reinforced by the contribution from the fins added in
the second step. In order to illustrate the temperature field, a spe-
cific numerical example is given. The temperature of both plates
is 100 �C and the fluid temperature is 10 �C at the inlet, the tem-
perature of every node at the inlet section along the height direc-
tion shown in Fig. 4 are listed in the Table 1 with different
relative density 0.01 and 0.2. The data show that the temperature
field of a single corrugated wall predicted from the corrugated
wall model is higher than the transfer matrix method. An overes-
timated temperature field leads to the heat transfer efficiency I
higher then the real case.

Because of ignoring the extra heat dissipation from the plate
surface and fin attachments, the effective medium model underes-
timates the heat transfer efficiency I. Thus the real heat transfer
efficiency lists between the corrugated wall model and the effec-
tive medium model. By analyzing the heat transfer both in the cor-
rugated walls and fins simultaneously, the transfer matrix method
can avoid the deficiency of the corrugated wall model and still can
model the detailed structure. Thus, the transfer matrix method is
more accurate method for predicting the heat transfer efficiency
of honeycomb structures.
5. Summary

The transfer matrix method as a new analytical method is pre-
sented to investigate the heat transfer performance of sand-
wiched metallic honeycomb structures under the forced
convection conditions. Similar with the corrugated wall model,
the transfer matrix method can model the detailed cellular struc-
ture, but it avoids the approximation in the corrugated model.
Comparison of the transfer matrix method with the corrugated
wall mode and effective medium model shows that these three
methods are all able to predict the heat transfer efficiency accu-
rately, and the heat transfer efficiency predicted by the transfer
matrix method is more precise.
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